Sequential Monte Carlo methods for graphical models

نویسندگان

  • Christian A. Naesseth
  • Fredrik Lindsten
  • Thomas B. Schön
چکیده

Inference in probabilistic graphical models (PGMs) does typically not allow for analytical solutions, confining us to various approximative methods. We propose a sequential Monte Carlo (SMC) algorithm for inference in general PGMs. Via a sequential decomposition of the PGM we find a sequence of auxiliary distributions defined on a monotonically increasing sequence of probability spaces. By targeting these auxiliary distributions using purpose built SMC samplers we are able to approximate the full joint distribution defined by the graphical model. Our SMC sampler also provides an unbiased estimate of the partition function (normalization constant) and we show how it can be used within a particle Markov chain Monte Carlo framework. This allows for better approximations of the marginals and for unknown parameters to be estimated. The proposed inference algorithms can deal with an arbitrary graph structure and the domain of the random variables in the graph can be discrete or continuous.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inference Networks for Sequential Monte Carlo in Graphical Models

We introduce a new approach for amortizing inference in directed graphical models by learning heuristic approximations to stochastic inverses, designed specifically for use as proposal distributions in sequential Monte Carlo methods. We describe a procedure for constructing and learning a structured neural network which represents an inverse factorization of the graphical model, resulting in a ...

متن کامل

Bayesian Inference in Decomposable Graphical Models Using Sequential Monte Carlo Methods

In this study we present a sequential sampling methodology for Bayesian inference in decomposable graphical models. We recast the problem of graph estimation, which in general lacks natural sequential interpretation, into a sequential setting. Specifically, we propose a recursive Feynman-Kac model which generates a flow of junction tree distributions over a space of increasing dimensions and de...

متن کامل

Sequential Monte Carlo for Graphical Models

We propose a new framework for how to use sequential Monte Carlo (SMC) algorithms for inference in probabilistic graphical models (PGM). Via a sequential decomposition of the PGM we find a sequence of auxiliary distributions defined on a monotonically increasing sequence of probability spaces. By targeting these auxiliary distributions using SMC we are able to approximate the full joint distrib...

متن کامل

Divide-and-Conquer with Sequential Monte Carlo

We propose a novel class of Sequential Monte Carlo (SMC) algorithms, appropriate for inference in probabilistic graphical models. This class of algorithms adopts a divide-and-conquer approach based upon an auxiliary tree-structured decomposition of the model of interest, turning the overall inferential task into a collection of recursively solved sub-problems. The proposed method is applicable ...

متن کامل

Lattice Points, Contingency Tables, and Sampling

Markov chains and sequential importance sampling (SIS) are described as two leading sampling methods for Monte Carlo computations in exact conditional inference on discrete data in contingency tables. Examples are explained from genotype data analysis, graphical models, and logistic regression. A new Markov chain and implementation of SIS are described for logistic regression.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014